Общая биология

А. Н. Тихонов

Преобразование энергии в хлоропластах

Введение

История изучения фотосинтеза ведет свое начало от августа 1771 г., когда английский теолог, философ и натуралист-любитель Джозеф Пристли (1733–1804) обнаружил, что растения могут «исправлять» свойства воздуха, меняющего свой состав в результате горения или жизнедеятельности животных. Пристли показал, что в присутствии растений «испорченный» воздух снова становится пригодным для горения и поддержания жизни животных.

В ходе дальнейших исследований Ингенгауза, Сенебье, Соссюра, Буссенго и других ученых было установлено, что растения при освещении выделяют кислород и поглощают из воздуха углекислый газ. Из углекислого газа и воды растения синтезируют органические вещества. Этот процесс был назван фотосинтезом.

Роберт Майер, открывший закон сохранения энергии, в 1845 г. высказал предположение, что растения превращают энергию солнечного света в энергию химических соединений, образующихся при фотосинтезе. По его словам, «распространяющиеся в пространстве солнечные лучи «захватываются» и сохраняются для использования в дальнейшем по мере надобности». Впоследствии русским ученым К.А. Тимирязевым было убедительно доказано, что важнейшую роль в использовании растениями энергии солнечного света играют молекулы хлорофилла, присутствующие в зеленых листьях.

Образующиеся при фотосинтезе углеводы (сахара) используются как источник энергии и строительный материал для синтеза различных органических соединений у растений и животных. У высших растений процессы фотосинтеза протекают в хлоропластах – специализированных энергопреобразующих органеллах растительной клетки.

Схематическое изображение хлоропласта показано на рис. 1.

Под двойной оболочкой хлоропласта, состоящей из наружной и внутренней мембран, находятся протяженные мембранные структуры, которые образуют замкнутые пузырьки, называемые тилакоидами. Мембраны тилакоидов состоят из двух слоев молекул липидов, в которые включены макромолекулярные фотосинтетические белковые комплексы. В хлоропластах высших растений тилакоиды группируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых друг к другу тилакоидов, имеющих форму дисков. Продолжением отдельных тилакоидов гран являются выступающие из них межгранные тилакоиды. Пространство между оболочкой хлоропласта и тилакоидами называется стромой. В строме содержатся хлоропластные молекулы РНК, ДНК, рибосомы, крахмальные зерна, а также многочисленные ферменты, включая те, которые обеспечивают усвоение CO2 растениями.

Публикация произведена при поддержке компании «Суши E’xpress». Компания «Суши E’xpress» предоставляет услуги доставки суши в Новосибирске. Заказав суши от компании «Суши E’xpress», Вы в быстрые сроки получите вкусное и полезное блюдо, изготовленное профессиональными поварами, с использованием самых свежих продуктов высочайшего качества. Посетив сайт компании «Суши E’xpress», Вы сможете ознакомиться с ценами и составом предлагаемых роллов, что поможет определиться с выбором блюда. Чтобы сделать заказ на доставку суши звоните по телефону 239-55-87

Световые и темновые стадии фотосинтеза

Согласно современным представлениям, фотосинтез представляет собой ряд фотофизических и биохимических процессов, в результате которых растения за счет энергии солнечного света синтезируют углеводы (сахара). Многочисленные стадии фотосинтеза принято разделять на две большие группы процессов – световую и темновую фазы.

Световыми стадиями фотосинтеза принято называть совокупность процессов, в результате которых за счет энергии света синтезируются молекулы аденозинтрифосфата (АТФ) и происходит образование восстановленного никотинамидадениндинуклеотид фосфата (НАДФ•Н) – соединения, обладающего высоким восстановительным потенциалом. Молекулы АТФ выполняют роль универсального источника энергии в клетке. Энергия макроэргических (т.е. богатых энергией) фосфатных связей молекулы АТФ, как известно, используется в большинстве биохимических процессов, потребляющих энергию.

Световые процессы фотосинтеза протекают в тилакоидах, мембраны которых содержат основные компоненты фотосинтетического аппарата растений – светособирающие пигмент-белковые и электронтранспортные комплексы, а также АТФ-синтазный комплекс, который катализирует образование АТФ из аденозиндифосфата (АДФ) и неорганического фосфата (Фi) (АДФ + Фi → АТФ + H2O). Таким образом, в результате световых стадий фотосинтеза энергия света, поглощаемого растениями, запасается в форме макроэргических химических связей молекул АТФ и сильного восстановителя НАДФ•Н, которые используются для синтеза углеводов в так называемых темновых стадиях фотосинтеза.

Темновыми стадиями фотосинтеза обычно называют совокупность биохимических реакций, в результате которых происходит усвоение растениями атмосферной углекислоты (CO2) и образование углеводов. Цикл темновых биохимических превращений, приводящих к синтезу органических соединений из CO2 и воды, по имени авторов, внесших решающий вклад в исследование этих процессов, называется циклом Кальвина–Бенсона. В отличие от электронтранспортных и АТФ-синтазного комплексов, которые находятся в тилакоидной мембране, ферменты, катализирующие «темновые» реакции фотосинтеза, растворены в строме. При разрушении оболочки хлоропласта эти ферменты вымываются из стромы, в результате чего хлоропласты теряют способность усваивать углекислый газ.

В результате превращений ряда органических соединений в цикле Кальвина–Бенсона из трех молекул CO2 и воды в хлоропластах образуется молекула глицеральдегид-3-фосфата, имеющего химическую формулу CHO–CHOH–CH2O–PO32-. При этом в расчете на одну молекулу CO2, включающуюся в глицеральдегид-3-фосфат, расходуются три молекулы АТФ и две молекулы НАДФ•Н.

Для синтеза органических соединений в цикле Кальвина–Бенсона используется энергия, выделяющаяся в ходе реакции гидролиза макроэргических фосфатных связей молекул АТФ (реакция АТФ + H2O → АДФ + Фi), и сильный восстановительный потенциал молекул НАДФ•Н. Основная часть образовавшихся в хлоропласте молекул глицеральдегид-3-фосфата поступает в цитозоль растительной клетки, где превращается во фруктозо-6-фосфат и глюкозо-6-фосфат, которые в ходе дальнейших превращений образуют сахарофосфат – предшественник сахарозы. Из оставшихся в хлоропласте молекул глицеральдегид-3-фосфата синтезируется крахмал.

Преобразование энергии в фотосинтетических реакционных центрах

Фотосинтетические энергопреобразующие комплексы растений, водорослей и фотосинтезирующих бактерий хорошо изучены. Установлены химический состав и пространственное строение энергопреобразующих белковых комплексов, выяснена последовательность процессов трансформации энергии. Несмотря на различия в составе и молекулярном строении фотосинтетического аппарата, существуют общие закономерности процессов преобразования энергии в фотореакционных центрах всех фотосинтезирующих организмов. В фотосинтетических системах как растительного, так и бактериального происхождения единым структурно-функциональным звеном фотосинтетического аппарата является фотосистема, которая включает в себя светособирающую антенну, фотохимический реакционный центр и связанные с ним молекулы – переносчики электрона.

Рассмотрим сначала общие принципы превращения энергии солнечного света, характерные для всех фотосинтетических систем, а затем более детально остановимся на примере функционирования фотореакционных центров и цепи электронного транспорта хлоропластов у высших растений.

Светособирающая антенна (поглощение света, миграция энергии к реакционному центру)

Самым первым элементарным актом фотосинтеза является поглощение света молекулами хлорофилла или вспомогательных пигментов, входящих в состав специального пигмент-белкового комплекса, называемого светособирающей антенной. Светособирающая антенна представляет собой макромолекулярный комплекс, предназначенный для эффективного улавливания света. В хлоропластах антенный комплекс содержит большое число (до нескольких сотен) молекул хлорофилла и некоторое количество вспомогательных пигментов (каротиноидов), прочно связанных с белком.

На ярком солнечном свету отдельная молекула хлорофилла поглощает кванты света сравнительно редко, в среднем не чаще чем 10 раз в секунду. Однако поскольку на один фотореакционный центр приходится большое количество молекул хлорофилла (200–400), то даже при относительно слабой интенсивности света, падающего на лист в условиях затенения растения, происходит достаточно частое срабатывание реакционного центра. Ансамбль пигментов, поглощающих свет, по сути дела, выполняет роль антенны, которая за счет своих достаточно больших размеров эффективно улавливает солнечный свет и направляет его энергию к реакционному центру. Тенелюбивые растения имеют, как правило, больший размер светособирающей антенны по сравнению с растениями, произрастающими в условиях высокой освещенности.

У растений основными светособирающими пигментами служат молекулы хлорофилла a и хлорофилла b, поглощающие видимый свет с длиной волны λ ≤ 700–730 нм. Изолированные молекулы хлорофилла поглощают свет лишь в двух сравнительно узких полосах солнечного спектра: при длинах волн 660–680 нм (красный свет) и 430–450 нм (сине-фиолетовый свет), что, разумеется, ограничивает эффективность использования всего спектра солнечного света, падающего на зеленый лист.

Однако спектральный состав света, поглощаемого светособирающей антенной, в действительности значительно шире. Объясняется это тем, что спектр поглощения агрегированных форм хлорофилла, входящих в состав светособирающей антенны, сдвигается в сторону больших длин волн. Наряду с хлорофиллом в светособирающую антенну входят вспомогательные пигменты, которые увеличивают эффективность ее работы за счет того, что они поглощают свет в тех областях спектра, в которых сравнительно слабо поглощают свет молекулы хлорофилла – основного пигмента светособирающей антенны.

У растений вспомогательными пигментами являются каротиноиды, поглощающие свет в области длин волн λ ≈ 450–480 нм; в клетках фотосинтезирующих водорослей это красные и синие пигменты: фикоэритрины у красных водорослей (λ ≈ 495–565 нм) и фикоцианины у синезеленых водорослей (λ ≈ 550–615 нм).

Поглощение кванта света молекулой хлорофилла (Сhl) или вспомогательного пигмента приводит к ее возбуждению (электрон переходит на более высокий энергетический уровень):

Chl + hν → Chl*.

Энергия возбужденной молекулы хлорофилла Chl* передается молекулам соседних пигментов, которые, в свою очередь, могут передать ее другим молекулам светособирающей антенны:

Chl* + Chl → Chl + Chl*.

Энергия возбуждения может, таким образом, мигрировать по пигментной матрице до тех пор, пока возбуждение в конечном итоге не попадет на фотореакционный центр P (схематическое изображение этого процесса показано на рис. 2):

Chl* + P → Chl + P*.

Заметим, что продолжительность существования молекул хлорофилла и других пигментов в возбужденном состоянии очень мала, τ ≈ 10–10–10–9 с. Поэтому существует определенная вероятность того, что на пути к реакционному центру P энергия таких короткоживущих возбужденных состояний пигментов может бесполезно потеряться – рассеяться в тепло или выделиться в виде кванта света (явление флуоресценции). В действительности, однако, эффективность миграции энергии к фотосинтетическому реакционному центру очень велика. В том случае когда реакционный центр находится в активном состоянии, вероятность потери энергии составляет, как правило, не более 10–15%. Такая высокая эффективность использования энергии солнечного света обусловлена тем, что светособирающая антенна представляет собой высокоупорядоченную структуру, обеспечивающую очень хорошее взаимодействие пигментов друг с другом. Благодаря этому достигается высокая скорость переноса энергии возбуждения от молекул, поглощающих свет, к фотореакционному центру. Среднее время «перескока» энергии возбуждения от одного пигмента к другому, как правило, составляет τ ≈ 10–12–10–11 с. Общее время миграции возбуждения к реакционному центру обычно не превышает 10–10–10–9 с.

Фотохимический реакционный центр (перенос электрона, стабилизация разделенных зарядов)

Современным представлениям о строении реакционного центра и механизмах первичных стадий фотосинтеза предшествовали работы А.А. Красновского, открывшего, что в присутствии доноров и акцепторов электрона возбужденные светом молекулы хлорофилла способны обратимо восстанавливаться (принимать электрон) и окисляться (отдавать электрон). Впоследствии Коком, Виттом и Дюйзенсом у растений, водорослей и фотосинтезирующих бактерий были обнаружены особые пигменты хлорофилловой природы, названные реакционными центрами, которые окисляются при действии света и являются, по сути дела, первичными донорами электрона при фотосинтезе.

Фотохимический реакционный центр P представляет собой особую пару (димер) молекул хлорофилла, которые выполняют роль ловушки энергии возбуждения, блуждающего по пигментной матрице светособирающей антенны (рис. 2). Подобно тому как жидкость стекает со стенок широкой воронки к ее узкому горлышку, к реакционному центру направляется энергия света, поглощаемого всеми пигментами светособирающей антенны. Возбуждение реакционного центра инициирует цепь дальнейших превращений энергии света при фотосинтезе.

Последовательность процессов, происходящих после возбуждения реакционного центра P, и диаграмма соответствующих изменений энергии фотосистемы схематически изображены на рис. 3.

Наряду с димером хлорофилла Р в фотосинтетический комплекс входят молекулы первичного и вторичного акцепторов электрона, которые мы условно обозначим символами A и B, а также первичный донор электрона – молекула D. Возбужденный реакционный центр P* обладает низким сродством к электрону и поэтому он с легкостью отдает его находящемуся рядом с ним первичному акцептору электрона A:

D(P*A)B → D(P+A)B.

Таким образом, в результате очень быстрого (т ≈10–12 с) переноса электрона от P* к A реализуется второй принципиально важный этап преобразования солнечной энергии при фотосинтезе – разделение зарядов в реакционном центре. При этом образуются сильный восстановитель А (донор электрона) и сильный окислитель P+ (акцептор электрона).

Молекулы P+ и А расположены в мембране асимметрично: в хлоропластах реакционный центр P+ находится ближе к поверхности мембраны, обращенной внутрь тилакоида, а акцептор А расположен ближе к внешней стороне. Поэтому в результате фотоиндуцированного разделения зарядов на мембране возникает разность электрических потенциалов . Индуцированное светом разделение зарядов в реакционном центре подобно генерации разности электрических потенциалов в обычном фотоэлементе. Следует, однако, подчеркнуть, что, в отличие от всех известных и широко используемых в технике фотопреобразователей энергии, эффективность работы фотосинтетических реакционных центров очень высока. КПД разделения зарядов в активных фотосинтетических реакционных центрах, как правило, превышает 90–95% (у лучших образцов фотоэлементов КПД  не более 30%).

За счет каких механизмов обеспечивается столь высокая эффективность преобразования энергии в реакционных центрах? Почему электрон, перенесенный на акцептор A, не возвращается обратно к положительно заряженному окисленному центру P+? Стабилизация разделенных зарядов обеспечивается главным образом за счет вторичных процессов электронного транспорта, следующих за переносом электрона от P* к A. От восстановленного первичного акцептора А электрон очень быстро (за 10–10–10–9 с) уходит на вторичный акцептор электрона B:

D(P+A)B → D(P+A)B.

При этом происходит не только удаление электрона от положительно заряженного реакционного центра P+, но и заметно снижается энергия всей системы (рис. 3). Это означает, что для переноса электрона в обратном направлении (переход B → A) ему потребуется преодолеть достаточно высокий энергетический барьер ΔE ≈ 0,3–0,4 эВ, где ΔE – разность энергетических уровней для двух состояний системы, при которых электрон находится соответственно на переносчике A или B. По этой причине для возвращения электрона назад, от восстановленной молекулы В к окисленной молекуле A, ему потребовалось бы гораздо больше времени, чем для прямого перехода A → B. Иными словами, в прямом направлении электрон переносится гораздо быстрее, чем в обратном. Поэтому после переноса электрона на вторичный акцептор B существенно уменьшается вероятность его возвращения назад и рекомбинации с положительно заряженной «дыркой» P+.

Вторым фактором, способствующим стабилизации разделенных зарядов, служит быстрая нейтрализация окисленного фотореакционного центра P+ за счет электрона, поступающего к P+ от донора электрона D:

D(P+A)B → D+(PA)B.

Получив электрон от молекулы донора D и вернувшись в свое исходное восстановленное состояние P, реакционный центр уже не сможет принять электрон от восстановленных акцепторов, однако теперь он готов к повторному срабатыванию – отдать электрон находящемуся рядом с ним окисленному первичному акцептору A. Такова последовательность событий, происходящих в фотореакционных центрах всех фотосинтезирующих систем.

Цепь электронного транспорта хлоропластов

В хлоропластах высших растений имеются две фотосистемы: фотосистема 1 (ФС1) и фотосистема 2 (ФС2), различающиеся по составу белков, пигментов и оптическим свойствам. Светособирающая антенна ФС1 поглощает свет с длиной волны λ ≤ 700–730 нм, а ФС2 – свет с λ ≤ 680–700 нм. Индуцированное светом окисление реакционных центров ФС1 и ФС2 сопровождается их обесцвечиванием, которое характеризуется изменениями их спектров поглощения при λ ≈ 700 и 680 нм. В соответствии с их оптическими характеристиками реакционные центры ФС1 и ФС2 получили название P700 и P680.

Две фотосистемы связаны между собой посредством цепи электронных переносчиков (рис. 4). ФС2 является источником электронов для ФС1. Инициируемое светом разделение зарядов в фотореакционных центрах P700 и P680 обеспечивает перенос электрона от воды, разлагаемой в ФС2, к конечному акцептору электрона – молекуле НАДФ+. Цепь электронного транспорта (ЦЭТ), соединяющая две фотосистемы, в качестве переносчиков электрона включает в себя молекулы пластохинона, отдельный электронтранспортный белковый комплекс (так называемый b/f-комплекс) и водорастворимый белок пластоцианин (Pc). Схема, иллюстрирующая взаимное расположение электронтранспортных комплексов в тилакоидной мембране и путь переноса электрона от воды к НАДФ+, показана на рис. 4.

В ФС2 от возбужденного центра Р*680 электрон переносится сначала на первичный акцептор феофетин (Phe), а затем на молекулу пластохинона QA, прочно связанную с одним из белков ФС2,

Y(P*680Phe)QAQB → Y(P+680Phe)QAQB →Y(P+680Phe)QAQB.

Затем электрон переносится на вторую молекулу пластохинона QB, а Р680 получает электрон от первичного донора электрона Y:

Y(P+680Phe)QAQB → Y+(P680Phe)QAQB.

Молекула пластохинона, химическая формула которой и ее расположение в бислойной липидной мембране показаны на рис. 5, способна принять два электрона. После двукратного срабатывания реакционного центра ФС2 молекула пластохинона QB получит два электрона:

QB + 2е → QB2– .

Отрицательно заряженная молекула QB2– обладает высоким сродством к ионам водорода, которые она захватывает из стромального пространства. После протонирования восстановленного пластохинона QB2– (QB2– + 2H+ → QH2) образуется электрически нейтральная форма этой молекулы QH2, которая называется пластохинолом (рис. 5). Пластохинол выполняет роль подвижного переносчика двух электронов и двух протонов: покинув ФС2, молекула QH2 может легко перемещаться внутри тилакоидной мембраны, обеспечивая связь ФС2 с другими электронтранспортными комплексами.

Окисленный реакционный центр ФС2 Р680 обладает исключительно высоким сродством к электрону, т.е. является очень сильным окислителем. Благодаря этому в ФС2 происходит разложение воды – химически устойчивого соединения. Входящий в состав ФС2 водорасщепляющий комплекс (ВРК) содержит в своем активном центре группу ионов марганца (Mn2+), которые служат донорами электрона для P680. Отдавая электроны окисленному реакционному центру, ионы марганца становятся «накопителями» положительных зарядов, которые непосредственно участвуют в реакции окисления воды. В результате последовательного четырехкратного срабатывания реакционного центра P680 в Mn-содержащем активном центре ВРК накапливаются четыре сильных окислительных эквивалента (или четыре «дырки») в форме окисленных ионов марганца (Mn4+), которые, взаимодействуя с двумя молекулами воды, катализируют реакцию разложения воды:

2Mn4+ + 2H2O → 2Mn2+ + 4H+ + O2.

Таким образом, после последовательной передачи четырех электронов от ВРК к Р680 происходит синхронное разложение сразу двух молекул воды, сопровождающееся выделением одной молекулы кислорода и четырех ионов водорода, которые попадают во внутритилакоидное пространство хлоропласта.

Образовавшаяся при функционировании ФС2 молекула пластохинола QH2 диффундирует внутрь липидного бислоя тилакоидной мембраны к b/f-комплексу (рис. 4 и 5). При столкновении с b/f-комплексом молекула QH2 связывается с ним, а затем передает ему два электрона. При этом на каждую молекулу пластохинола, окисляемую b/f-комплексом, внутрь тилакоида выделяются два иона водорода. В свою очередь, b/f-комплекс служит донором электрона для пластоцианина (Pc) – сравнительно небольшого водорастворимого белка, у которого в состав активного центра входит ион меди (реакции восстановления и окисления пластоцианина сопровождаются изменениями валентности иона меди Cu2+ + e ↔ Cu+). Пластоцианин выполняет роль связующего звена между b/f-комплексом и ФС1. Молекула пластоцианина быстро перемещается внутри тилакоида, обеспечивая перенос электрона от b/f-комплекса к ФС1. От восстановленного пластоцианина электрон поступает непосредственно к окисленным реакционным центрам ФС1 – Р700+ (см. рис. 4). Таким образом, в результате совместного действия ФС1 и ФС2 два электрона от молекулы воды, разлагаемой в ФС2, через цепь электронного транспорта переносятся в конечном итоге на молекулу НАДФ+, обеспечивая образование сильного восстановителя НАДФ•Н.

Зачем хлоропластам нужны две фотосистемы? Известно, что фотосинтезирующие бактерии, которые используют в качестве донора электрона для восстановления окисленных реакционных центров различные органические и неорганические соединения (например, Н2S), успешно функционируют с одной фотосистемой. Появление двух фотосистем, вероятнее всего, связано с тем, что энергии одного кванта видимого света недостаточно для того, чтобы обеспечить разложение воды и эффективное прохождение электроном всего пути по цепи молекул-переносчиков от воды к НАДФ+. Приблизительно 3 млрд лет назад на Земле появились синезеленые водоросли или цианобактерии, которые приобрели способность использовать воду в качестве источника электронов для восстановления углекислоты. В настоящее время считается, что ФС1 ведет свое происхождение от зеленых бактерий, а ФС2 – от пурпурных бактерий. После того как в ходе эволюционного процесса ФС2 «включилась» в единую цепь переноса электрона вместе с ФС1, стало возможным решить энергетическую проблему – преодолеть довольно большую разницу в окислительно-восстановительных потенциалах пар кислород/вода и НАДФ+/НАДФ•Н. Возникновение фотосинтезирующих организмов, способных окислять воду, стало одним из важнейших этапов развития живой природы на Земле. Во-первых, водоросли и зеленые растения, «научившись» окислять воду, овладели неисчерпаемым источником электронов для восстановления НАДФ+. Во-вторых, разлагая воду, они наполнили атмосферу Земли молекулярным кислородом, создав, таким образом, условия для бурного эволюционного развития организмов, энергетика которых связана с аэробным дыханием.

Сопряжение процессов электронного транспорта с переносом протонов и синтезом АТФ в хлоропластах

Перенос электрона по ЦЭТ, как правило, сопровождается понижением энергии. Этот процесс можно уподобить самопроизвольному движению тела по наклонной плоскости. Понижение уровня энергии электрона в ходе его движения вдоль ЦЭТ вовсе не означает, что перенос электрона всегда является энергетически бесполезным процессом. В нормальных условиях функционирования хлоропластов большая часть энергии, выделяющейся в ходе электронного транспорта, не пропадает бесполезно, а используется для работы специального энергопреобразующего комплекса, называемого АТФ-синтазой. Этот комплекс катализирует энергетически невыгодный процесс образования АТФ из АДФ и неорганического фосфата Фi (реакция АДФ + Фi → АТФ + H2O). В этой связи принято говорить, что энергодонорные процессы электронного транспорта сопряжены с энергоакцепторными процессами синтеза АТФ.

Важнейшую роль в обеспечении энергетического сопряжения в мембранах тилакоидов, как и во всех остальных энергопреобразующих органеллах (митохондрии, хроматофоры фотосинтезирующих бактерий), играют процессы протонного транспорта. Синтез АТФ тесно связан с переносом через АТФ-синтазу трех протонов из тилакоидов (3Hin+) в строму(3Нout+):

АДФ + Фi + 3Hin+ → АТФ + Н2О + 3Нout+ .

Этот процесс становится возможным потому, что вследствие асимметричного расположения переносчиков в мембране функционирование ЦЭТ хлоропластов приводит к накоплению избыточного количества протонов внутри тилакоида: ионы водорода поглощаются снаружи на стадиях восстановления НАДФ+ и образования пластохинола и выделяются внутри тилакоидов на стадиях разложения воды и окисления пластохинола (рис. 4). Освещение хлоропластов приводит к существенному (в 100–1000 раз) увеличению концентрации ионов водорода внутри тилакоидов.

Итак, мы рассмотрели цепь событий, в ходе которых энергия солнечного света запасается в форме энергии высокоэнергетичных химических соединений – АТФ и НАДФ•Н. Эти продукты световой стадии фотосинтеза используются в темновых стадиях для образования органических соединений (углеводов) из углекислого газа и воды. Основные этапы преобразования энергии, приводящие к образованию АТФ и НАДФ•Н, включают в себя следующие процессы: 1) поглощение энергии света пигментами светособирающей антенны; 2) перенос энергии возбуждения к фотореакционному центру; 3) окисление фотореакционного центра и стабилизация разделенных зарядов; 4) перенос электрона по цепи электронного транспорта, образование НАДФ•Н; 5) трансмембранный перенос ионов водорода; 6) синтез АТФ.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Албертс Б., Брей Д., Льюис Дж., Робертс К., Уотсон Дж. Молекулярная биология клетки. Т. 1. – М.: Мир, 1994. 2-е изд.
2. Кукушкин А.К., Тихонов А.Н. Лекции по биофизике фотосинтеза растений. – М.: Изд-во МГУ, 1988.
3. Николс Д.Д. Биоэнергетика. Введение в хемиосмотическую теорию. – М.: Мир, 1985. 
4. Скулачев В.П. Энергетика биологических мембран. – М.: Наука, 1989.

Рисунки предоставлены автором

Рейтинг@Mail.ru
Рейтинг@Mail.ru